ANNA UNIVERSITY CHENNAI KATHIR COLLEGE OF ENGINEERING, COIMBATORE

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

R2017 REGULATION

PROGRAMME OUTCOMES (POs)

Students graduating from Electronics and communication Engineering should be able to:

PO1.Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2.Problem analysis: Identity, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3.Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4.Conduct investigations of complex problems: Use research – based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5.Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and writeeffective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in self, and lifelong learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOME (PSOs)

PSO1: To apply the Engineering knowledge to develop Innovative Ideas for existing / Novel problems through information and communication technologies (ICT).

PSO2: To design the Analog and Digital system and practice for Developing Quality products.

PSO3: Understand social needs and environmental concerns with ethical responsibility to become a successful professional.

COURSE OUTCOMES

I - SEMESTER		
Course code	C101	
Subject code	HS8151	
Subject	Communicative English	
name		
COURSE OUTCOMES		
CO1	Read articles of a general kind in magazines and newspapers.	
CO2	Participate effectively in informal conversations introduce themselves	
COZ	and their friends and express opinions in English.	
CO3	Comprehend conversations and short talks delivered in English.	
CO4	Write short essays of a general kind and personal letters and emails in	
	English.	

Course code	C102	
Subject code	MA8151	
Subject	Engineering Mathematics – I	
name		
	COURSE OUTCOMES	
CO1	Use both the limit definition and rules of differentiation to differentiate	
COI	functions.	
CO2	Apply differentiation to solve maxima and minima problems.	
CO3	Evaluate integrals both by using Riemann sums and by using the	
CO3	Fundamental Theorem of Calculus.	
	Apply integration to compute multiple integrals, area, volume, integrals	
CO4	in polar coordinates, in addition to change of order and change of	
	variables.	
	Calculate the total derivative, differentiation of implicit function, Taylor	
CO5	series of function of two variables and determine Jacobian elements,	
	Maxima, Minima of two Variables and Lagragian multiplier.	

Course code	C103
Subject code	PH8151
Subject	Engineering Physics
name	
	COURSE OUTCOMES
CO1	Classify the Bravais lattices and different types of crystal structures and growth techniques.
CO2	Demonstrate the properties of elasticity and heat transfer through objects.
CO3	Discuss black body radiation, properties of matter waves and Schrodinger wave equations.
CO4	Illustrate the acoustic requirements, production and application of ultrasonics.
CO5	Examine the characteristics of laser and optical fiber.

Course code	C104	
Subject code	CY8151	
Subject		
name	Engineering Chemistry	
COURSE OUTCOMES		
CO1	Identify the characteristics of water and treatment techniques.	
CO2	Gain the knowledge about surface chemistry and catalysis.	
CO3	Competent the basic concept of phase rule and its applications.	
CO4	Grasp the knowledge of fuels and classification.	
CO5	Compare the strengths and limitations of energy sources.	

Course code	C105		
Subject code	GE8151		
Subject	Problem Solving and Python Programming		
name			
	COURSE OUTCOMES		
CO1	Develop algorithmic solutions to simple computational problems.		
CO2	Read, write, execute by hand simple Python programs.		
CO3	Structure simple Python programs for solving problems.		
CO4	Decompose a Python program into functions.		
CO5	Represent compound data using Python lists, tuples, dictionaries. Read		
	and write data from/to files in Python Programs.		

Course code	C106		
Subject code	GE8152		
Subject name	ENGINEERING GRAPHICS		
	COURSE OUTCOMES		
CO1	Perform free hand sketching of basic geometrical constructions and multiple views of objects.		
CO2	Do orthographic projection of lines and plane surfaces.		
CO3	Draw projections and solids and development of surfaces.		
CO4	Prepare isometric and perspective sections of simple solids.		
CO5	Demonstrate computer aided drafting.		

Course code	C107		
Subject code	GE8161		
Subject			
name	Problem Solving and Python Programming Laboratory		
	COURSE OUTCOMES		
CO1	Write and test and debug simple python programs.		
CO2	Design conditions and loop concepts in python.		
CO3	Develop a python programs to implement functions and calling function		
003	concepts.		
CO4	Execute list, tuple, dictionaries concept in python.		
CO5	Execute file concepts in python programs.		

Course code	C108
Subject code	BS8161
Subject	
name	Physics and Chemistry Laboratory
COURSE OUTCOMES	
CO1	Apply physics principles of optics and thermal physics to evaluate
COI	engineering properties of materials.
CO2	Outfit with hands-on knowledge in the quantitative chemical analysis of
CO2	water quality related parameters
CO3	Determine the DO content in water sample by winkler's method and
	molecular weight of polymer by Ostwald viscometer.
CO4	Find the strength of an acid using pH meter and conductometer
CO5	Estimate the amount of weak and strong acids in a mixture by
	conductometer

II - SEMESTER		
Course code	C109	
Subject code	HS8251	
Subject		
name	Technical English	
	COURSE OUTCOMES	
CO1	Speak convincingly, express their opinions clearly, initiate a discussion, negotiate, and argue using appropriate communicative strategies.	
CO2	Write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.	
CO3	Read different genres of texts, infer implied meanings and critically analyse and evaluate them for ideas as well as for method of presentation.	
CO4	Listen/view and comprehend different spoken excerpts critically and infer unspoken and implied meanings.	

C	C440
Course code	C110
Subject code	MA8251
Subject	
name	Engineering Mathematics – II
	COURSE OUTCOMES
CO1	Develop the fundamentals and basic concepts in vector calculus, ODE,
01	Laplace transform and complex functions.
602	Solve problems related to engineering applications by using these
CO2	techniques.
CO3	To have an ability of mathematical modelling of systems using
CO3	differential equations and ability to solve the differential equations.
CO4	Use Green's theorem to evaluate line integrals along simple closed
	contours on the plane and use Stokes' theorem to give a physical
	interpretation of the curl of a vector field.
CO5	Expand functions of two variables as Taylor's and Laurent's series and
	evaluate Contour integrals using Cauchy's formula.

Course code	C111
Subject code	PH8253
Subject	
name	Physics for Electronics Engineering
	COURSE OUTCOMES
CO1	Gain knowledge on classical and quantum electron theories, and energy
COI	band structures.
CO2	Analyze the basics of semiconductor physics and its applications in
COZ	various devices.
CO3	Analyze on magnetic and dielectric properties of materials.
CO4	Describe the functioning of optical materials for optoelectronics.
CO5	Discuss of quantum structures and their applications in spintronics and
	carbon electronic.

Course code	C112
Subject code	BE8254
Subject	
name	Basic Electrical and Instrumentation Engineering
	COURSE OUTCOMES
601	Understand the basic concepts and laws of DC and AC electrical
CO1	networks and solve them using mesh and nodal analysis techniques.
600	Knowledge of the Circuit components, parameters and theorems
CO2	related to AC and DC circuit analysis.
	Ability to apply the concepts of resonance, transients and coupled
CO3	circuits to design, develop, and analyze the electric circuits, thus
	improving the problem solving skills.
CO4	Apply time and frequency concepts of analysis.
CO5	Understand various functions of network and also the stability of
	network and Synthesize the network using passive elements.

Course code	C113	
Subject code	EC8251	
Subject		
name	Circuit Analysis	
	COURSE OUTCOMES	
CO1	Analyze electrical circuits using Kirchhoff's law.	
CO2	Apply circuit theorems to evaluate AC & DC circuits.	
CO3	Summarize the concepts of resonance & coupled circuit.	
CO4	Analyze the transient response for AC & DC circuits.	
CO5	Calculate the power and power factor in three phase circuits.	

Course code	C114
Subject code	EC8252
Subject	
name	Electron Devices
COURSE OUTCOMES	
CO1	Able to understand the characteristics of semiconductor diodes.
CO2	Gain the knowledge on BJT transistor characteristics.
CO3	Analyze the operation of the various bias circuits of MOSFET.
CO4	Analyze the operation of semiconductor devices.
CO5	To understand the operation and design various types of power
	amplifier circuits.

Course code	C115	
Subject code	EC8261	
Subject		
name	Circuits and Devices Laboratory	
	COURSE OUTCOMES	
CO1	Determine the characteristics of diodes and transistors.	
CO2	Demonstrate the clipper, clamper & FWR circuits.	
CO3	Apply KVL, KCL, Thevenin, Norton, Superposition, maximum power transfer and reciprocity theorems to DC circuits.	
CO4	Design serial & parallel RLC Circuits.	
CO5	Analyze transient response of RL and RC circuits.	

Course code	C116	
Subject code	GE8261	
Subject		
name	Engineering Practice Laboratory	
	COURSE OUTCOMES	
CO1	Make use of wiring circuits for residential house, fluorescent lamp and	
	stair case.	
602	Classify the electrical quantities of V, I & PF in RLC and energy with	
CO2	single phase energy meter.	
CO3	Demonstrate the logic gates and electronic components.	
CO4	Manipulate PCB with electronic components, devices and circuits for	
	general purposes.	
CO5	Perform HWR & FWR with ripple factor and clock signal generation.	

III - SEMESTER		
Course code	C201	
Subject code	MA 8353	
Subject	TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS	
name	TRANSFORMS AND FARTIAL DIFFERENTIAL EQUATIONS	
COURSE OUTCOMES		
CO1	Apply Fourier series analysis in Engineering problems.	
CO2	Classify and solve wave equations and heat equations.	
CO3	Solve problems related to engineering applications by using Fourier	
003	transform techniques.	
CO4	Solve discrete transforms and difference equations.	
CO5	Formulate and solve problems involving Partial Differential Equations.	

Course code	C202
Subject code	EC8393
Subject name	Fundamentals of Data structure in C
COURSE OUTCOMES	
CO1	Apply the concepts of arrays and strings in different applications using
	C.
CO2	Apply linear and non-linear data structure operations using C.
CO3	Illustrate operations like searching, insertion, and deletion, traversing
	mechanism etc. on various data structures.
CO4	Appropriately choose new data structure for an application.
CO5	Design appropriate sorting/searching technique for given problem.

Course code	C203	
Subject code	EC8351	
Subject name	Electronic Circuits I	
COURSE OUTCOMES		
CO1	Design and troubleshoot the regulated DC power supplies.	
CO2	Characterize various biasing methods for amplifier circuits.	
CO3	Perform small signal analysis of BJT, FET transistors for single-stage and multi stage amplifiers.	
CO4	Analyze the characteristics of large signal power amplifiers.	
CO5	Analyze low frequency and high frequency analysis of BJT and FET Amplifiers.	

Course code	C204
Subject code	EC 8352
Subject	Signals and Systems
name	,
COURSE OUTCOMES	
CO1	Apply the transforms in analysis of signals and system in continuous and
CO1	discrete time domain.
600	Develop input output relationship for linear shift invariant system and
CO2	evaluate the time and frequency response.
602	Analyze the limitations of Fourier transform and need for Laplace
CO3	transform to analyze the system in s - domain.
CO4	Evaluate the signals in frequency domain using Fourier series and
	Fourier transforms.
CO5	Analyze discrete time LTI systems using Z transform and DTFT.

Course code	C205	
Subject code	EC 8392	
Subject name	Digital Electronics	
COURSE OUTCOMES		
CO1	Analyze different methods used for simplification of Boolean	
	expressions.	
CO2	Analyze and design various combinational circuits using logic gates.	
CO3	Design and analyze the timing properties of sequential circuits using	
	state machines.	
CO4	Design and develop various modes of asynchronous sequential circuits.	
CO5	Synthesize combinational and sequential circuits using Verilog HDL.	

Course code	C206
Subject code	EC8391
Subject	Control Systems Engineering
name	Control Systems Engineering
COURSE OUTCOMES	
CO1	Figure out the various control system components and their
	representations.
CO2	Examine the various time domain parameters and Analysis the various
	frequency response plots and its system.
CO3	Work the concepts of various system stability criterions.
CO4	Figure various transfer functions of digital control system using state
	variable models.
CO5	Illustrate the state space model of physical system.

Course code	C207
Subject code	EC8381
Subject	
name	Fundamentals of Data Structure in C laboratory
COURSE OUTCOMES	
604	Demonstrate the C++ programs for manipulating constructors,
CO1	destructors, overloading concepts.
CO2	Apply data structures such as arrays, linked lists in various applications.
CO3	Execute the different data structures like stacks and queues for
CO3	developing solutions to practical problems.
604	Perform with Stack ADT Array and linked list implementations
CO4	and theirapplication.
CO5	Apply the concept of Heap Sort, Quick Sort program counter and
	status register.

Course code	C208
Subject code	EC8361
Subject	Analog and Digital Circuits Laboratory
name	Alialog and Digital Circuits Laboratory
COURSE OUTCOMES	
CO1	Design the combinational circuits using standard gates and classify
	minimization methods.
CO2	Design and analyze the frequency Response of Amplifiers.
CO3	Apply various sequential circuits using Flip-flops.
CO4	Design rectifiers using active and passive elements.
CO5	Simulate Amplifier using SPICE.

Course code	C209	
Subject code	HS8381	
Subject name	Interpersonal skills/Listening and Speaking	
	COURSE OUTCOMES	
CO1	Complete course outline/Course Objectives/Learning Outcomes/	
CO1	Evaluation Pattern & Assignments.	
602	Demonstrate his/her ability to write error free while making an	
CO2	optimum use of correct Business Vocabulary & Grammar.	
	Participate in an online learning environment successfully by developing	
600	the Implication-based understanding of Paraphrasing, deciphering	
CO3	instructions, interpreting guidelines, discussion boards & Referencing	
	Styles.	
CO4	Discuss about effective presentations.	
CO5	Participate confidently and appropriately in conversations both formal	
	and informal.	

IV - SEMESTER	
Course code	C210
Subject code	MA8451
Subject name	Probability and Random Process
COURSE OUTCOMES	
CO1	Identify the functions of discrete & continuous random variables, moments and moment generating functions.
CO2	Solve problems in marginal and conditional distributions using the concept of correlation, regressions and transformation of two dimensional random variables.
CO3	Determine the process is either SSS or WSS and classify the TPM of Markov chain process.
CO4	Analyse the autocorrelation and cross correlation between two random variables.
CO5	Evaluate the power spectral density and cross power spectral density.

Course code	C211	
Subject code	CE8452	
Subject	Electronic Circuits II	
name	Electronic Circuits II	
COURSE OUTCOMES		
CO1	Examine the concepts of feedback amplifiers.	
CO2	Classify the various types of oscillators.	
CO3	Design different types of tuned amplifiers and analyze its performance.	
CO4	Discuss various types of wave shaping circuits and multivibrators.	
CO5	Design the blocking oscillator and time base generator circuits.	

Course code	C212
Subject code	EC8491
Subject	Communication Theory
name	Communication meory
COURSE OUTCOMES	
CO1	Analyze amplitude modulation systems such as DSBSC, SSB and VSB.
600	Discuss the various types of angle modulation system such as narrow
CO2	and wide band FM circuits.
CO3	Apply the concepts of Random Process to the design of communication
	systems.
CO4	Classify the types of noise sources added in communication channel.
CO5	Discuss about information theory and compute the Huffman and
	Shannon-fanon encoding models.

Course code	C213	
Subject code	EC8451	
Subject name	Electromagnetic Fields	
	COURSE OUTCOMES	
CO1	Analyze field potentials due to static charges using theorems and laws	
CO1	such as Coulomb's Law, Gauss Law.	
CO2	Discuss different boundary conditions for electric field and apply	
	Poisson's & Laplace's equations to find capacitance.	
CO3	Analyze the field potentials due to charges in static magnetic fields.	
CO4	Analyze the materials affect magnetic fields.	
CO5	Analyze the relation between the fields under time varying situations.	

Course code	C214
Subject code	EC8453
Subject	Linear Integrated Circuits
name	9
COURSE OUTCOMES	
CO1	Analyze performance characteristics of operational amplifier.
CO2	Practice linear and non-linear operational amplifier applications such as
	adders, sub tractors, integrator, differentiator, log amplifiers and filters.
CO3	Implement the applications using analog multiplier and PLL.
CO4	Construct ADC and DAC using OP - AMPS.
CO5	Determine waveforms using OP – AMP Circuits.

Course code	C215
Subject code	GE8291
Subject	Environmental Science and Engineering
name	Environmental science and Engineering
COURSE OUTCOMES	
CO1	Analyze structure and functions of different Eco Systems and Bio
CO1	diversity.
602	Classify the effects and control measures of various environmental
CO2	pollutions.
602	Analyze the role of an individual in conservation of various natural
CO3	resources.
CO4	Discuss about the various environmental protection acts.
CO5	Analyze the impact of population growth on environment and discuss
	about welfare programme.

Course code	C216	
Subject code	EC6411	
Subject	Circuits and Simulation Integrated Laboratory	
name	Circuits and Simulation integrated Laboratory	
COURSE OUTCOMES		
CO1	Analyze various types of feedback amplifiers.	
CO2	Design of oscillators, tuned amplifiers, wave-shaping circuits.	
CO3	Demonstrate the oscillators and tuned amplifiers using SPICE.	
CO4	Demonstrate the wave-shaping circuits and multivibrators using SPICE.	
CO5	Demonstrate the voltage and current time base circuits using SPICE.	

Course code	C217
Subject code	EC8462
Subject	Linear Integrated Circuits Laboratory
name	Linear integrated Circuits Laboratory
COURSE OUTCOMES	
CO1	Design of oscillators and amplifiers using Op-Amp.
CO2	Design of filters using Op-Amp and analyze the frequency response.
CO3	Investigate the working of PLL and its frequency multiplier circuit.
CO4	Design of DC power supply circuit using ICs.
CO5	Analyze the performance of oscillators and multi vibrators using
	PSPICE.

V - SEMESTER		
Course code	C301	
Subject code	EC 8501	
Subject	Digital Communication	
name		
COURSE OUTCOMES		
CO1	Analyze the sampling, quantization and encoding techniques.	
CO2	Analyze the DPCM, DM, ADPCM and ADM techniques.	
CO3	Analyze the line coding and techniques for eliminating ISI in digital	
003	communication system.	
604	Design and implement base band transmission and reception schemes	
CO4	and implement band pass signaling schemes.	
CO5	Apply error control coding techniques in digital communication	
	system.	

Course code	C302	
Subject code	EC8553	
Subject	Discrete Time Signal Processing	
name		
COURSE OUTCOMES		
CO1	Apply DFT and FFT for the analysis of digital signals and systems.	
CO2	Design and analysis of IIR, FIR digital filters.	
CO3	Apply effects of finite precision representation on digital filters.	
CO4	Design multi rate filters.	
CO5	Apply adaptive filters appropriately in communication systems.	

Course code	C303
Subject code	EC8552
Subject name	Computer Architecture and Organization
COURSE OUTCOMES	
CO1	Discuss data representation, instruction formats and the operation of a
	digital computer.
CO2	Illustrate the arithmetic and logic unit.
602	Discuss about development schemes of control unit and pipeline
CO3	performance.
CO4	Illustrate the parallel processing architectures.
CO5	Examine the performance of memory and I/O systems.

Course code	C304
Subject code	EC8551
Subject	Computer Networks
name	
COURSE OUTCOMES	
CO1	Identify the components required to build different types of networks.
CO2	Discuss the required functionality at data link layer for an application.
CO3	Analyze the routing path of network.
CO4	Sketch the solution for functionalities of transport layer protocol.
CO5	Discuss the protocols in the application layer.

Course code	C305	
Subject code	EC8073	
Subject	Medical Electronics	
name	Medical Electronics	
	COURSE OUTCOMES	
CO1	Discuss the terminologies of electro-physiology and its recording.	
600	Analyze the measurement techniques of bio-chemical and non-electrical	
CO2	parameters.	
CO3	Classify the various types of assist devices.	
CO4	Categorize the various diathermy and bio-telemetry techniques.	
CO5	Outline current trends in medical instrumentation.	

Course code	C306
Subject code	OR0511
Subject name	Renewable Energy
	COURSE OUTCOMES
CO1	Discuss on solar radiation and its environmental impact to power.
CO2	Analyze the various collectors used for storing solar energy.
CO3	Analyze the various applications in solar energy.
CO4	Discuss about the wind energy and biomass and its economic aspects.
CO5	Gather the knowledge about geothermal energy with other energy sources.

Course code	C307	
Subject code	EC8562	
Subject	Digital Signal Processing Laboratory	
name	Digital digital i locessing Euporatory	
	COURSE OUTCOMES	
CO1	Develop and experiment coding from basic mathematical operations to	
COI	complex operations like DFT and FFT.	
CO2	Analyze the amplitude and phase spectrum of the signal in frequency	
CO2	domain.	
CO3	Analyze the finite word length effect on DSP systems.	
CO4	Apply the FFT techniques for various applications of DSP systems.	
CO5	Apply the adaptive filters for various applications of DSP systems.	

Course code	C308
Subject code	EC8561
Subject	Communication System Laboratory
name	Communication System Laboratory
	COURSE OUTCOMES
CO1	Design and verify the sampling & reconstruction and TDM circuits.
CO2	Design and verify the AM, FM and its demodulation circuits.
CO3	Describe the working of PCM, DM, ADM and demodulation circuits.
604	Design band pass digital signaling schemes through simulation for FSK,
CO4	PSK, QPSK and QAM techniques.
CO5	Compute the line coding schemes to improve the noise performance of
COS	communication systems through simulations.

Course code	C309	
Subject code	EC8563	
Subject name	Communication Network Laboratory	
	COURSE OUTCOMES	
CO1	Demonstrate the communication between two desktop computers.	
CO2	Elaborate the different protocols used in computer communication.	
CO3	Develop and compare the various routing algorithms.	
CO4	Develop the cryptography techniques.	
CO5	Develop both wired and wireless networks.	

VI – SEMESTER	
Course code	C310
Subject code	EC8691
Subject	Microprocessor and Microcontroller
name	Wilch ophocessor and Microcontroller
	COURSE OUTCOMES
CO1	Illustrate the architecture of 8086 and write its assembly language
COI	programs.
600	Develop the 8086 system bus structure and multiprocessor
CO2	configurations.
602	Discuss memory and I/O interfacing with applications such as traffic
CO3	light controller, display interface and alarm controller.
604	Define the architecture of 8051 microcontroller and write its assembly
CO4	language programs.
CO5	Experiment the interfacing programs such as ADC, DAC, stepper motor

and waveform generation with the help of 8051 microcontroller.	

Course code	C311
Subject code	EC8095
Subject	VLSI Design
name	V LSI Design
	COURSE OUTCOMES
CO1	Outline the CMOS semiconductor technology and its principles.
600	Discuss the design principles of various combinational logic circuits for
CO2	digital operations.
CO3	Design the various arithmetic building blocks of the combinational and
003	sequential circuits.
604	Experiment with the design principles of various sequential logic circuits
CO4	for digital operations.
CO5	Interpret the various implementation strategies of the combinational
005	and sequential logic circuits.

Course code	C312
Subject code	EC8652
Subject name	Wireless Communication
COURSE OUTCOMES	
CO1	Discuss about wireless channels and various signaling schemes for
COI	fading channels.
CO2	Compare multipath mitigation techniques and analyze their
	performance.
CO3	Examine the cellular system.
604	Analyze the various digital signaling methods and error performance in
CO4	fading channels.
CO5	Discuss about MIMO systems with transmit/receive diversity.

Course code	C313
Subject code	MG8591
Subject	Principles of Management
name	Finiciples of Management
	COURSE OUTCOMES
601	Discuss the managerial roles in local and global organization,
CO1	environmental factors & Strategies for International business.
CO2	List the planning process & benefits of MBO.
CO3	Infer the decision making model under different conditions.
	Illustrate the different organization structure, Line & staff authority,
CO4	staff selection & Career development and performance appraisal
	process.
COF	Demonstrate the creativity, innovation and leadership styles through
CO5	the principles of effective communication and organization culture.

Course code	C314	
Subject code	EC8651	
Subject name	Transmission Lines and RF systems	
	COURSE OUTCOMES	
CO1	Analyze the characteristics of transmission lines and its losses.	
CO2	Write about the standing wave ratio and input impedance in high frequency transmission lines.	
CO3	Technical knowledge in impedance matching using smith chart.	
CO4	Identify passive filters and has basic knowledge of active RF components.	
CO5	Analyze the characteristics of TE and TM waves.	

Course code	C315
Subject code	EC8004
Subject	Wireless Networks
name	
COURSE OUTCOMES	
CO1	Categorize the various protocols and standards of wireless LAN.
600	Describe the protocols for mobile network layer and routing in mobile
CO2	ad-hoc network.
CO3	Illustrate the TCP for mobile transport layer.
CO4	Discuss about the different wireless WAN architectures.
CO5	Summarize the 4G technologies and its applications.

Course code	C316
Subject code	EC8681
Subject	Microprocessor and Microcontroller Laboratory
name	Which ophocessor and Microcontroller Laboratory
COURSE OUTCOMES	
CO1	Develop the ALP Programs for fixed point arithmetic circuits.
602	Design and develop programs on 8086 microprocessor by
CO2	understanding its architecture, instruction set and interrupt process.
CO3	Compile the ALP for generating waveforms such as square wave and
	triangular wave using microprocessors.
CO4	Design a communication interface by understanding the system bus
	structure of 8086 microprocessor.
CO5	Develop the programs in 8051 microcontroller for ADC, DAC, stepper
	motor.

Course code	C317
Subject code	EC8661
Subject	VI SI Design I showstowy
name	VLSI DesignLaboratory
COURSE OUTCOMES	
CO1	Design the Verilog HDL code for basic as well as advanced digital
	integrated circuits.
CO2	Develop the integrated circuit logics into Xilinx FPGA Boards.
CO3	Calculate area, speed, power and delay of the integrated circuit
	modules.
CO4	Model the analog IC blocks using EDA tools and build the GDSII format.
CO5	Design the digital integrated circuits and analyze its performance using
	internal logic analyzer.

VII - SEMESTER	
Course code	C401
Subject code	EC8701
Subject name	ANTENNAS AND MICROWAVE ENGINEERING
COURSE OUTCOMES	
CO1	Understand the basic principles in antenna and microwave system design
CO2	Analyze the area of various antenna designs .
CO3	Design antenna arrays and its applications
CO4	Describe the operation of passive and active microwave devices.
CO5	Analyze the principle of operation of measuring instruments.

Course code	C402
Subject code	EC8751
Subject name	OPTICAL COMMUNICATION
	COURSE OUTCOMES
CO1	Study about the various optical fiber modes, configuration and transmission characteristics of optical fibers
CO2	Learn about the various optical sources, detectors and transmission techniques
CO3	Explore various idea about optical fiber measurements and various coupling techniques
CO4	Enrich the knowledge about optical communication systems and networks
CO5	Infer the optical networks and its associated parameters on system performance.

Course code	C403
Subject code	EC8791
Subject	EMBEDDED AND REAL TIME SYSTEMS
name	
COURSE OUTCOMES	
CO1	Develop the architecture and programming of ARM processor.
CO2	Outline the concepts program level in embedded processor computing.
CO3	Discuss the basic concepts of real time Operating system.
CO4	Illustrate the concept of design methodologies techniques for
	embedded system.
CO5	Evaluate the performance of various RTOS mechanisms.

Course code	C404
Subject code	EC8702
Subject	AD HOC AND WIRELESS SENSOR NETWORKS
name	COLIDSE OLITCOMES
COURSE OUTCOMES	
CO1	Learn Ad hoc network and Sensor Network fundamentals.
CO2	Understand the different routing protocols.
CO3	In-depth knowledge on sensor network architecture and design issues
CO4	Understand the transport layer and security issues possible in Ad hoc and Sensor networks.
CO5	Exposure to mote programming platforms and tools.

Course code	C405
Subject code	EC8711
Subject	Embedded Laboratory
name	
COURSE OUTCOMES	
CO1	Create the programs for ARM based applications.
CO2	Demonstrate the memory operations, A/D & D/A convertors using ARM
	system.
CO3	Analyze the interrupt functions in ARM based systems.
CO4	Demonstrate the keyboard, display, motor and sensor interfacing units.
CO5	Evaluate the ARM performance for various optimizations.

Course code	C406
Subject code	EC8761
Subject	ADVANCED COMMUNICATION LABORATORY
name	ADVANCED COMMONICATION EADORATORT
COURSE OUTCOMES	
CO1	Understand the working principle of optical sources, detector, fibers.
CO2	Develop understanding of simple optical communication link.
CO3	Understand the measurement of BER, Pulse broadening.
CO4	Understand and capture an experimental approach to digital wireless communication.
CO5	Understand actual communication waveforms that will be sent and received across wireless channel.

VIII - SEMESTER	
Course code	C407
Subject code	EC8811
Subject name	Project work
COURSE OUTCOMES	
CO1	Identify challenging practical problems, solutions to cope up with present scenario of Electronics and Communication Engineering field.
CO2	Analyze the various methodologies and technologies and discuss with team for solving the problem.
CO3	Apply technical knowledge and project management skills for solving the problem.
CO4	Design and develop hardware and/or software for their project specific problem.
CO5	Formulate the project reports and give proper explanation during the presentation and demonstration.